参考文献

総説・教科書

 
Itatani K. New imaging tools in cardiovascular medicine: computational fluid dynamics and 4D flow MRI
新しい血流解析の代表的な手法であるCFD, MRI, 超音波VFMを用いた血流解析の原理と使い分け、臨床応用について解説した総説です。血流解析とはそもそもどんなものなのか、循環器疾患に対して流体力学的を応用する概念から説明されており、近年急速に発達している血流解析について全体像を把握することができます。
 
Itatani K. Advances in hemodynamics research. Nova Science Publisher. 2015
血流解析研究に必要な知識が体系的にまとめられた教科書です。古典的な脈波解析による血流解析から、MRI、コンピュータシミュレーション、超音波計測などを用いた最新の血流可視化解析まで網羅されており、これから血流の研究を始めたい方や血流の流体力学的な理解を深めたい方におすすめの一冊です。
全10章からなっており、前半5章は血流解析や血流解析ツール(MRI, CFD, 超音波など)の理論的な説明が書かれており、後半5章は血流解析の臨床応用研究について書かれています。各チャプターは最先端で研究をしている専門家が執筆し、弊社顧問の板谷医師が編集を行っています。
 
Markl M1, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI.J Magn Reson Imaging. 2012 Nov;36(5):1015-36. doi: 10.1002/jmri.23632.
 

VFMの論文

 
Akiyama K, Nakamura N, Itatani K, Naito Y, Kinoshita M, Shimizu M, Hamaoka S, Kato H, Yasumoto H, Nakajima Y, Mizobe T, Numata S, Yaku H, Sawa T. Flow-dynamics assessment of mitral-valve surgery by intraoperative vector flow mapping. Interact Cardiovasc Thorac Surg. 2017;24(6):869?75.
VFMで僧帽弁修復後のさ室内渦流パターンとエネルギー損失を評価し、弁形成術とのサイズが渦パターンとエネルギー損失に影響を与えることを報告しています。
 
Akiyama K, Itatani K, Naito Y, Kinoshita M, Shimizu M, Hamaoka S, Yasumoto H, Kato H, Nakajima Y, Numata S, Yaku H, Sawa T. Vector flow mapping and impaired left ventricular flow after the alfieri stitch. J Cardiothorac Vasc Anesth. 2017;31(1):211?4.
Alfieri stich後1例において血行動態をVFMで解析した論文です。
 
Nakashima K, Itatani K, Kitamura T, Oka N, Horai T, Miyazaki S, Nie M, Miyaji K. Energy dynamics of the intraventricular vortex after mitral valve surgery. Heart Vessels. 2017. doi:10.1007/ s00380-017-0967-6.
僧帽弁の人工弁留置の向きが心内に形成される渦流とエネルギー効率に影響を与えるという報告です。
 
Stugaard M, Koriyama H, Katsuki K, Masuda K, Asanuma T, Takeda Y, Sakata Y, Itatani K, Nakatani S. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur Heart J Cardiovasc Imaging. 2015;16(7):723?30.
VFMを用いてARにおいて左室内の拡張期エネルギー損失がAR重症度と比例することを報告した論文です。
 
Honda T, Itatani K, Miyaji K, Ishii M. Assessment of the vortex flow in the post-stenotic dilatation above the pulmonary valve stenosis in an infant using echocardiography vector flow mapping. Eur Heart J. 2014;35(5):306.
VFMを用いてDORV修復後の肺動脈でのエネルギー損失を計測した論文です。交連切開術により渦流が小さくなりエネルギー損失が減少したことが報告されています。
 
Fukuda N, Itatani K, Kimura K, Ebihara A, Negishi K, Uno K, Miyaji K, Kurabayashi M, Takenaka K. Prolonged vortex formation during the ejection period in the left ventricle with low ejection fraction: a study by vector flow mapping. J Med Ultrasonic. 2014;41(3):301?
 
Nabeta T, Itatani K, Miyaji K, Ako J. Vortex flow energy loss reflects therapeutic effect in dilated cardiomyopathy. Eur Heart J. 2015;36(11):637.
VFMを用いて拡張型心筋症における薬物治療により渦流の様相とエネルギー損失が改善したことが報告されています。
 
Honda T, Itatani K, Miyaji K, Ishii M. Assessment of the vortex flow in the post-stenotic dilatation above the pulmonary valve stenosis in an infant using echocardiography vector flow mapping. Eur Heart J. 2014 Feb;35(5):306.
VFMを用いた左心房の解析で、糖尿病患者においても左心房が正常サイズであってもエネルギー損失から機能不全を早期に発見できる可能性を示しています。
 
Pedrizzetti G, La Canna G, Alfieri O, Tonti G. The vortex―an early predictor of cardiovascular outcome? Nat Rev Cardiol. 2014;11(9):545?53.
 

CFDの論文

 
Numata S, Itatani K, Kanda K, Doi K, Yamazaki S, Morimoto K, Manabe K, Ikemoto K, Yaku H. Blood flow analysis of the aortic arch using computational fluid dynamics. Eur J Cardiothorac Surg. 2016;49(6):1578?85.
大動脈においてOSIとWSS双方が高い部位が解離リスクになる可能性が示されています。
 
Haggerty CM, Restrepo M, Tang E, de Z?licourt D a, Sundareswaran KS, Mirabella L, Bethel J, Whitehead KK, Fogel M a, Yoganathan AP. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J Thorac Cardiovasc Surg. 2013:1?10.
 
Hsia TY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F, Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation. 2011;124(11 Suppl):S204?210.
 
Itatani K, Miyaji K, Tomoyasu T, Nakahata Y, Ohara K, Takamoto S, Ishii M. Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann Thorac Surg 2009;88(2):565?72.
 
Chatzizisis YS, Jonas M, Coskun AU, Beigel R, Stone BV, Maynard C, Gerrity RG, Daley W, Rogers C, Edelman ER, Feldman CL, Stone PH. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation. 2008;117(8):993?1002.
低いWSSがプラーク進展リスクになることが報告されています。
 
Bove EL, Migliavacca F, de Leval MR, Balossino R, Pennati G, Lloyd TR, Khambadkone S, Hsia T-Y, Dubini G. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock?Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc surg. 2008;136:312?320 (e2).
 
Fukumoto Y, Hiro T, Fujii T, Hashimoto G, Fujimura T, Yamada J, Okamura T, Matsuzaki M. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol. 2008;51(6):645?50.
血管内超音波とCFDを用いて冠動脈のプラーク破綻部位と高WSS部位が一致したことが報告されています。
 
Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in singleventricle patients after the Fontan: insights from computational fluid dynamics. Circulation. 2007;116(11 Suppl):I165-I171.
CFDを用いてFontan循環におけるエネルギー損失を計測した論文です。運動時でのFontanの導管内血流を仮想的にCFDでシミュレーションして心負荷を推定しています。
 

4D Flow MRIの論文

 
Keller EJ, Malaisrie SC, Kruse J, McCarthy PM, Carr JC, Markl M, Barker AJ, Collins JD. Reduction of aberrant aortic haemodynamics following aortic root replacement with a mechanical valved conduit. Interact Cardiovasc Thorac Surg. 2016;23(3):416?23.
 
Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015;42:870?86.
 
Collins JD, Semaan E, Barker A, McCarthy PM, Carr JC, Markl M, Malaisrie SC. Comparison of hemodynamics after aortic root replacement using valve-sparing or bioprosthetic valved conduit. Ann Thorac Surg. 2015;100(5):1556?62.
 
Semaan E, Markl M, Malaisrie SC, Barker A, Allen B, McCarthy P, Carr JC, Collins JD. Haemodynamic outcome at four-dimensional flow magnetic resonance imaging following valve-sparing aortic root replacement with tricuspid and bicuspid valve morphology. Eur J Cardiothorac Surg. 2014;45(5):818?25.
 
Haggerty CM, Restrepo M, Tang E, de Z?licourt D a, Sundareswaran KS, Mirabella L, Bethel J, Whitehead KK, Fogel M a, Yoganathan AP. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J Thorac Cardiovasc Surg. 2013:1?10.
 
Clough RE, Waltham M, Giese D, Taylor PR, Schaeffter T. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging. J Vasc Surg. 2012;55(4):914?23.
 
Eriksson J, Carlh?ll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson. 2010;12:9.
 
Barker AJ, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng. 2010;38(3):788?800.
 
Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, Hennig J, Markl M. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med. 2010;63(6):1529?36.
 
Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88:2235?47.
 
Honda T, Itatani K, Takanashi M, Mineo E, Kitagawa A, Ando H, Kimura S, Nakahata Y, Oka N, Miyaji K, Ishii M. Quantitative evaluation of hemodynamics in the Fontan circulation: a cross-sectional study measuring energy loss in vivo. Pediatr Cardiol. 2014;35(2):361?7.
カテーテルによりFontan循環のエネルギー損失の直接計測し、エネルギー損失と右室の拡張能の相関を報告した論文です。
 
Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG, Jo H. Oscillatory shear stress stimulates endothelial production of O2―from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem. 2003;278(47):47291?8.
血管内皮細胞へのOscillatory Shear Stressの影響に関する報告で、OSIが高いと活性酸素が産生されることが示されています。
 

技術

 
Itatani K, Okada T, Uejima T, Tanaka T, Ono M, Miyaji K, Takenaka K. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn J Appl Phys. 2013;52:07HF16.
 
Uejima T, Koike A, Sawada H, Aizawa T, Ohtsuki S, Tanaka M, Furukawa T, Fraser AG. A new echocardiography method for identifying vortex flow in the left ventricle: numerical study. Ultrasound Med Biol. 2010;36(5):772 ? 88.
 
Garcia D, Del Almano JC, Tanne D, Yotti R, Cortina C, Bertrand E, Antoranz JC, Perez-David E, Rieu R, Fernandez-Aviles F, Bermejo J. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans Med Imaging. 2010;29(10):1701?13.
 
Miyazaki S,Itatani K, Furusawa T, Nishino T, Sugiyama M, Takehara Y, Yasukochi S. Validation of numerical simulation methods in aortic arch using 4D Flow MRI. Heart Vessels. 2017; 32(8): 1032?1044.
 
Goto S, Nakamura M, Itatani K, Miyazaki S, Oka N, Honda T, Kitamura T, Horai T, Ishii M, Miyaji K. Synchronization of the flow and pressure waves obtained with non-simultaneous multipoint measurements. Int Heart J. 2016;57(4):449?55.
 
Barker AJ, van Ooij P, Bandi K, Garcia J, Albaghdadi M, McCarthy P, Bonow RO, Carr J, Collins J, Malaisrie SC, Markl M. Viscous energy loss in the presence of abnormal aortic flow. Magn Reson Med. 2014;72(3):620?8.
 
Corsini Baretta a, Yang C, Vignon-Clementel W, Marsden a IE, Feinstein L, Hsia J a, Dubini T-Y, Migliavacca G, Pennati FG. Virtual surgeries in patients with congenital heart disease: a multiscale modelling test case. Philos Transact A Math Phys Eng Sci. 2011;369:4316?30.
 
Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng. 2010;13(5):625?40.
 
Taylor C a, Fonte T a, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61:2233?41.
 
Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVERFLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989?97.
 
Bove EL, Migliavacca F, de Leval MR, Balossino R, Pennati G, Lloyd TR, Khambadkone S, Hsia T-Y, Dubini G. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock?Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc surg. 2008;136:312?320 (e2).
 
Qian Y, Liu JL, Itatani K, Miyaji K, Umezu M. Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann Biomed Eng. 2010;38(7):2302?13.